The Ritz Method for Boundary Problems with Essential Conditions as Constraints

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary conditions as constraints

A new method to compute the symplectic structure of a quantum field theory with non trivial boundary conditions is proposed. Following the suggestion in [1, 2], we regard that the boundary conditions are second class constraints in the sense of the Dirac’s method. However, we show that this proposal is more useful if we consider an inverse of the Holographic map between a theory defined in the ...

متن کامل

Boundary Conditions as Dirac Constraints

In this article we show that boundary conditions can be treated as Lagrangian and Hamiltonian primary constraints. Using the Dirac method, we find that boundary conditions are equivalent to an infinite chain of second class constraints which is a new feature in the context of constrained systems. We discuss the Dirac brackets and the reduced phase space structure for different boundary conditio...

متن کامل

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

Duality for vector equilibrium problems with constraints

‎In the paper‎, ‎we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior‎. ‎Then‎, ‎their applications to optimality conditions for quasi-relative efficient solutions are obtained‎. ‎Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematical Physics

سال: 2016

ISSN: 1687-9120,1687-9139

DOI: 10.1155/2016/7058017